Derivatives
Madison Treserにより

1. Quotient Rule
1.1. f(x)=g(x)/h(x)
1.1.1. f'(x)=[g'(x)h(x)-g(x)h'(x)]/{[h(x)]^2}
2. Product Rule
2.1. f(x)=g(x)h(x)
2.1.1. f'(x)=g'(x)h(x)+g(x)h(x)
3. Trig Functions
3.1. f(x)=sin(x)
3.1.1. f'(x)=cos(x)
3.2. f(x)=cos(x)
3.2.1. f'(x)=-sin(x)
3.3. f(x)=tanx
3.3.1. f'(x)=sec^2(x)
4. Derivatives can be attributed to the work of Isaac Newton and Gottfried Leibniz.
4.1. Isaac Newton
4.2. Gottfried Leibniz
5. Power Rule
5.1. f(x)=x^n
5.1.1. f(x)'=nx^n-1
6. Practice Problems: Find the derivatives to these functions.
6.1. 1) f(x)=3x^2
6.2. 2) f(x)=4x^3+2x^2+2x+5
6.3. 3) f(x)=(3x+4)^2
6.4. 4) f(x)=(6x+2)(3x+1)
6.5. 5) f(x)=(4x^2)/(3x)
6.6. 6) f(x)=sin(x)cos(x)
7. Chain Rule
7.1. f(x)=g(h(x))
7.1.1. f'(x)=g'(h(x))h'(x)